If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+13y=48
We move all terms to the left:
y^2+13y-(48)=0
a = 1; b = 13; c = -48;
Δ = b2-4ac
Δ = 132-4·1·(-48)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-19}{2*1}=\frac{-32}{2} =-16 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+19}{2*1}=\frac{6}{2} =3 $
| 43x=12 | | 8x^2-48x-42=0 | | 4(2x-1)-3x=-24 | | -2=b/3+-6 | | 10-u=4u | | X^4+9=4x^2 | | -{x-7}+5*3=2{x+9} | | 16-3p=7 | | 14=10-4n | | x2+18x=−31 | | 2x+79=8x+7 | | 2(3x-2)=3(2x-1) | | 2,000/3x+50=7.50 | | 9=d/3+8 | | 7(c-5)=2(c+5) | | 3(4x-2)=5x-7 | | 3^x-7=4x+8 | | x-6=8-(9+×) | | 18n-81=n^2 | | 40+(55•5)=p | | 2(x+3)+5x-7=3x-9 | | 14=-(7/5)u | | 30x=(x+14)+(8x+9)+(x+17) | | -12+w/3=-16 | | 2^(2x)-6(2^x)+8=0 | | 40+(55•12)=p | | X^4+3x^2-6=-8 | | T=2m+30T=40 | | m÷19=-2 | | 5^2+6x=10 | | 5x=–7 | | -19.77+17.5c=14c-15.22 |